JAVA
INTERVIEW
CHEAT SHEET

Q&A for Technical Interviews

Popular questions

suddo.io

I = PLATFORM INDEPENDENCE |

Q: Is the Java compiler (javac) platform-dependent? If so, how does Java
achieve platform independence with .class files?

The Java compiler (javac) itself is platform-dependent, meaning that the binary you run on
Windows is different from the one you run on Linux or mac0S, since it has to be compiled for that
operating system.

However, the output of the compiler — the .class file (Java bytecode) — is platform-independent.
Bytecode follows the Java Virtual Machine (JVM) specification, so the same .class file can run on
any platform.

When you execute a .class file, the JVM of the target platform (Windows JVM, Linux JVM, etc.)
interprets or JIT-compiles the bytecode into native machine code specific to that operating
system and hardware.

In short:

+ The javac compiler binary is platform-specific
» The .class bytecode it produces is platform-independent
- The JVM makes sure that the same bytecode runs on any platform by translating it into platform-

specific instructions

© CONCURRENCY

Q1: What is the difference between volatile and synchronized?

Volatile — Let's first understand the problem without volatile. When multiple threads share a
variable, each thread has its own local CPU cache/working memory. When a thread writes to a
variable, it first updates its local cache. Later (not immediately), it may flush the value to
main memory. Another thread reading that variable may still see the old value from its own cache,
leading to eventual consistency (delay in visibility).

Problem without volatile:

private static boolean running = true; // not volatile Main Thread: sets running = false (writes to its cache,
flush later) Worker Thread: keeps reading running from its own cache (still true) Result = Worker thread may
never stop, because it doesn't see the update

This is because visibility is not guaranteed across threads without synchronization.
Solution with volatile:
When we declare the variable as volatile, the Java Memory Model enforces:

« Every write goes directly to main memory
= Every read comes directly from main memory
+ No caching of stale values is allowed

private static volatile boolean running = true; Main Thread: writes running = false -+ immediately flushed to main
memory Worker Thread: always reads from main memory, sees the updated value Result - Worker thread stops
correctly

I suddo.io 2 |

Synchronized — when multiple threads update the same variable then race
condition can occur

Problem: When two threads interleave, updates can be lost:

Thread t1 reads counter = 0 Thread t2 also reads counter = 0 t1 increments = 1 t2 increments = also 1 (overwrites
t1's update) & Instead of 2, the counter is still 1. This is a lost update problem.

At first glance, you may think the result will always be 2000. But in reality, it is often less
than 2000. Why? Because counter+ is not an atomic operation. It's actually three steps:

1. Read the value of counter from memory
2. Increment the value
3. Write the new value back to memory

Solution with synchronized:

public synchronized void increment() { count+; } public synchronized int getCount() { return count; }

The synchronized keyword puts a lock on the object (counter).
When one thread enters the increment() method, the other thread must wait.
This ensures:

1. Atomicity » no interleaving of counter+

2. Visibility » updates are flushed to main memory

Now the final result is always 2000.

= JAVA MEMORY MODEL

Q2: Explain Java Memory Model and happens-before relationship

The Java Memory Model defines:

« How threads interact through memory (variables, caches, main memory)
* What reads/writes are visible to other threads and when

» The rules for reordering instructions (by compiler or CPU) while still preserving correctness
Key concepts of JMM:

Each thread can cache variables in CPU registers or local memory. Updates to shared variahles are
not guaranteed to be immediately visible to other threads. Compiler/JVM/CPU may reorder
instructions for optimization. synchronized, volatile, final, and java.util.concurrent classes

(locks, atomics) establish rules so that threads see consistent values.
Happens-Before Relationship:

The happens-before relationship is the foundation of the JMM. It defines when one action's result

is guaranteed to be visible to another action.
If A happens-before B:

= The result of action A is visible to action B
« Action A is ordered before action B (no reordering)

I suddo.io 3 |

Happens-Before Rules:

1. Program order rule

Within a single thread, statements happen in the order they are written.
int a = 5; // happens-before int b = a+1; // this

2. Monitor lock rule

An unlock on a monitor (synchronized block exit) happens-before every subsequent lock on the same

monitor.

synchronized(lock) { shared = 42; } // unlock happens-before synchronized(lock) { System.out.println(shared); }
// lock

3. Volatile Variable rule

A write to a volatile variable happens-before every subsequent read of that same variable.

| volatile boolean flag = false; flag = true; // write happens-before if(flag) { ... } // read

4. Thread start rule

A call to Thread.start() on a thread happens-before any actions inside that thread.

| Thread t = new Thread(() — { /* actions %/ }); t.start(); // happens-before thread actions

5. Thread Termination Rule

All actions in a thread happen-before another thread detects its termination (via Thread.join()
or Thread.isAlive()).

| t.start(); t.join(); // happens-after t's actions

¢ OPTIONAL IN JAVA 8

Q3: When do you use Optional in Java 8? What are the anti-patterns?

The main purpose of Optional<T> is to represent the possible absence of a value without using
null. It makes code more readable and avoids NPE.

For method getUserByName(String name), we are returning an Optional<User> which means it might
return a user or empty result. Seeing the Optional return type from a method, the caller of the
method is forced to handle it i.e. it documents the possibility of absence better than just
returning null. Caller can use ifPresentOrElse method to handle both cases.

public Optional<User> getUserByName(String name) { if ("Anil".equals(name)) { return Optional.of(new User("Anil",
"anil@email.com", "123")); } else { return Optional.empty(); } } Optional<User> userOpt =
demo.getUserByName("Anil"); userOpt.ifPresentOrElse(user — System.out.println("User found: " + user.getName()),
() — System.out.println("User not found"));

Anti-patterns with Optional:

Do not use optional in method argument, fields and constructor
Do not directly use Optional.get() (may cause NoSuchElementException)

Do not allow a getter method to return optional
suddo.io 4

Ic@ EQUALS & HASHCODE |

Q4: How does equals() and hashCode() contract affect collections like
HashMap?

When working with Java collections like HashMap, HashSet, or Hashtable, two methods play a
critical role in determining how objects are stored and retrieved: equals() and hashCode().

The Contract Between equals() and hashCode():

« If two objects are equal according to equals(), they must have the same hashCode()
+ If two objects have the same hashCode(), they may or may not be equal
» Different objects can collide in the same bucket

How HashMap Uses equals() and hashCode():
When you put an entry into a HashMap:

1. The hashCode() of the key is calculated -» determines the bucket
2. If multiple keys map to the same bucket, equals() is used to resolve conflicts

Map<String, String> map = new HashMap<(); map.put("apple", "fruit"); // Lookup process: String key = "apple";
int hash = key.hashCode(); // Step 1: bucket // Step 2: equals() check with existing keys in that bucket
System.out.printin(map.get("apple")); // “"fruit"

The Danger of Mutable Keys:

A common pitfall is using a mutable object as a key.

class MutableKey { int id; MutableKey(int id) { this.id = id; } @Override public boolean equals(Object o) {
return o instanceof MutableKey && this.id = ((MutableKey) o).id; } @0Override public int hashCode() { return
Objects.hash(id); } } Map<MutableKey, String> map = new HashMap<(); MutableKey key = new MutableKey(1);
map.put(key, "Value"); key.id = 2; // » Mutation after insertion System.out.println(map.get(new MutableKey(1)));
// null System.out.println(map.size()); // 1

Why does this happen?

« When key.id = 1, the entry is stored in the bucket based on hashCode(1)
« After changing id to 2, the key's hashCode() changes, but the entry remains in the original
bucket

* When you look up with a new MutableKey(1), the map searches the correct bucket, but cannot find
the mutated key

Common Anti-Patterns:

Overriding equals() but not hashCode()

Using mutable keys in hash-based collections

Using business fields that frequently change inside equals() and hashCode()
Returning random or dynamic values from hashCode()

I suddo.io 5 |

® MEMORY LEAKS

Q5: How would you prevent memory leaks in Java?

1. Event Listeners, Observers, and Callbacks

One of the most common sources of memory leaks in Java applications comes from event listeners,
observers, and callbacks that are registered but never removed.

The Button class has a listener set on it. This listener is an anonymous inner class Which
implicitly holds a reference to window.this.

Even if we set window=null, the button still holds a reference to the listener, which holds a
reference to window. This prevents garbage collection of window and causes memory leak.

Solution: Add a cleanup() method in Window class which should deregister listener.

void cleanup() { button.setListener(null); // ® Deregister listener } // Usage window.cleanup(); System.gc(); //
Now Window can be collected

Or use static inner class which do not hold reference of outer class.
2. Inner Classes / Anonymous Classes

Non-static inner classes keep an implicit reference to their outer class. If the outer object is

large and only the inner is referenced, the whole outer remains in memory.
3. ThreadLocal Misuse

If we don't call remove() after use, values may stick around in thread-local storage (especially
in long-lived threads like thread pools). This is one of the most common causes in enterprise

apps.

private static ThreadlLocal<byte[]> threadLocal = ThreadLocal.withInitial(() — new byte[1024 * 10824]1); // °
Problem: data remains in thread's internal map executorService.submit(() — { threadLocal.set(new byte[10 * 1024
% 10241); System.out.println("Task executed"); // Missing cleanup! }); // ® Solution: always call remove() in
finally block executorService.submit(() — { try { threadlLocal.set(new byte[10 * 1824 * 1024]);
System.out.println("Task executed"); } finally { threadLocal.remove(); // ® Ensure cleanup } });

A thread pool with 1 thread is created. Each task sets a 10MB array in ThreadlLocal. Even after

tasks finish, the data is still in the thread's internal map because we didn't call remove().

suddo.io

4. Using HashMap for Caching

If we use a normal HashMap for caching, keys and values will never get garbage-collected unless
we manually remove them. That means the cache keeps growing s memory leak.

Problem: HashMap holds strong references to keys and values. Even though we set key to null, the

map still holds its entry.

private static final Map<Object, byte[]> cache = new HashMap<(); Object key = new Object(); cache.put(key, new
byte[10 % 1824 % 1024]); // 10MB per key key = null; // Remove strong reference to key System.gc();
System.out.printin("After GC: " + cache.size()); // 1 (entry retained!)

Solution: Use WeakHashMap which holds weak references to keys.

If a key is no longer referenced elsewhere (e.g., you set key = null or it goes out of scope),
the entry is automatically eligible for garbage collection. The whole entry (key + value) is
removed from the map.

private static final Map<Object, byte[]> cache = new WeakHashMap<(); Object key = new Object(); cache.put(key,
new byte[10 x 1024 % 1024]); // 16MB per key System.out.println("Before GC: " + cache.size()); // 1 key = null;
// Remove strong reference to key System.gc(); Thread.sleep(18008); System.out.println("After GC: " +
cache.size()); // © (entry cleared!)

By default, values in WeakHashMap are strong references. But you can make them weak by wrapping
them in WeakReference<T>.

WeakHashMap<Object, WeakReference<String>> map = new WeakHashMap<>(); Object key = new Object(); String value =
new String("Hello"); // force heap object map.put(key, new WeakReference< (value)); System.out.println("Before
null: " + map.get(key).get()); // Hello value = null; // drop strong reference to value System.gc();
Thread.sleep(1000); System.out.println("After GC: " + map.get(key)); // still has WeakReference
System.out.println("After GC deref: " + map.get(key).get()); // null

The key is strongly referenced (still alive in main()), so the entry stays. But the value was
weakly referenced, and since we set value = null, GC collects it. The map still holds the key,
but the value inside the WeakReference is now null.

suddo.io 7

% CALLABLE VS RUNNABLE

Q6: What's the difference between Callable and Runnable?

Let's discuss the basic difference between Callable and Runnable:

+ Runnable has no return type (void)

» Callable has a return type

» Runnable cannot throw checked exception (must catch inside)

+ Callable can throw checked exception (wrapped in ExecutionException on future.get())

Runnable example:

Runnable runnable = () — { System.out.println("Running in thread: " + Thread.currentThread().getName()); // Must
handle checked exceptions inside try { throw new IOException("An error occurred in Runnable"); } catch
(I0Exception e) { throw new RuntimeException(e); } }; Thread thread = new Thread(runnable); thread.start();

Here you can see that the checked exception is handled inside the runnable only.

Callable example:

ExecutorService executor = Executors.newSingleThreadExecutor(); Future<Integer> submit = executor.submit(() — {
// Can throw checked exceptions if(true) { throw new I0Exception("An error in Callable"); }
System.out.printin(Thread.currentThread().getName()); return 42; }); try { System.out.println(submit.get()); }
catch (ExecutionException e) { // Exception wrapped here throw new RuntimeException(e); } executor.shutdown();

Callable works with ExecutorService + Future. When we call future.get(), it catches the exception
inside ExecutionException block.

suddo.io 8

® FORKJOINPOOL

Q7: ForkJoinPool in Java

ForkJoinPool is a specialized implementation of ExecutorService in Java 7. It is designed to
efficiently execute divide-and-conquer (recursive) tasks in parallel.

Workflow:

1. A large task is submitted to the ForkJoinPool

2. The task is recursively split (forked) into smaller subtasks

3. The subtasks are executed in parallel by worker threads

4. The results of subtasks are combined (joined) to produce the final result

// Example: Sum numbers from 1 to 20 int[] numbers = new int[20]; for (int i = 0@; i < numbers.length; i+) {
numbers[i] = i + 1; } ForkJoinPool pool = new ForkJoinPool(); SumTask task = new SumTask(numbers, 0,
numbers.length); Long result = pool.invoke(task); System.out.println("Sum of numbers: " + result);

public class SumTask extends RecursiveTask<Long> { private static final int THRESHOLD = 5; private int start,
end; private int[] numbers; @0verride protected Long compute() { if (end - start < THRESHOLD) { long sum = 0;
for (int i = start; i < end; i+) { sum += numbers[i]; } return sum; } else { int mid = (start + end) / 2;
SumTask left = new SumTask(numbers, start, mid); left.fork(); SumTask right = new SumTask(numbers, mid, end);
long rightResult = right.compute(); long leftResult = left.join(); return leftResult + rightResult; } } }

Key Concepts:

« invoke() is a blocking call that waits until computation is finished
« compute() defines the divide-and-conquer logic
« fork() pushes task onto worker's deque

« join() waits for the result
Worker Deque Mechanism:

Each worker thread maintains its own deque (double-ended queue) to store tasks. When a worker
thread forks a new task, it pushes that task onto the tail of its own deque.

The worker will later pop tasks from the tail (LIFO order), which makes sense because the most
recently forked subtask is likely to be cached and executed quickly.

If a worker's deque becomes empty, it doesn't sit idle. Instead, it tries to steal tasks from
other workers' deques. When stealing, it takes tasks from the head (FIFO order) to reduce
contention — owner thread is working from the tail and thieves steal from the head, so rare
chance of fighting for the same task.

suddo.io 9

@ DEADLOCK, LIVELOCK, STARVATION

Q8: Explain deadlock, livelock, and starvation

Deadlock — Deadlock happens when two or more threads are blocked forever, each waiting for a
resource that another thread holds.

* Thread-1 holds lockA and waits for lockB
* Thread-2 holds lockB and waits for lockA
« Neither can proceed and both are stuck forever

Analogy: Two people meet in a narrow hallway. Each one insists the other move first. Both refuse

-+ nobody moves.

Thread t1 = new Thread(() — { synchronized (LOCK1) { System.out.printin("Thread-1 acquired LOCK1");
Thread.sleep(180); synchronized (LOCK2) { System.out.println("Thread-1 acquired LOCK2"); } } }); Thread t2 = new
Thread(() — { synchronized (LOCK2) { System.out.println("Thread-2 acquired LOCK2"); Thread.sleep(100);
synchronized (LOCK1) { System.out.println("Thread-2 acquired LOCK1"); } } });

Livelock — In livelock, threads are not blocked (they are active) but they keep responding to

each other in a way that prevents progress.

Example: Two people meet in a narrow hallway. Both step aside to the left at the same time -
still blocked. Both step aside to the right at the same time -» still blocked. They keep moving

but never make progress.

while (true) { if (resl.tryLock()) { System.out.println("Thread-1 locked Resourcel"); if (!res2.tryLock()) {
System.out.println("Thread-1 releasing Resourcel to retry..."); resl.unlock(); Thread.sleep(50); } else {
System.out.printin("Thread-1 locked Resource2"); break; } } }

Starvation — A thread suffers starvation when it waits indefinitely because higher-priority
threads keep getting scheduled and it never gets CPU time or access to the resource.

In a priority-based scheduling system, if one low-priority thread needs a lock, but higher-
priority threads keep preempting it, the low-priority thread may never acquire the lock.

Analogy: In a buffet, people keep cutting in 1line, and one person at the end never gets food.

Thread low = new Thread(lowPriorityTask); Thread highl = new Thread(highPriorityTask); Thread high2 = new
Thread(highPriorityTask); low.setPriority(Thread.MIN_PRIORITY); // Priority = 1
highl.setPriority(Thread.MAX_PRIORITY); // Priority = 10 high2.setPriority(Thread.MAX_PRIORITY); // Priority = 10

suddo.io 10

= THREAD-SAFE CACHE DESIGN

Q9: How would you design a thread-safe cache?

Caching is a critical concept in software development for improving performance by storing
frequently accessed data in memory. In multi-threaded environments, designing a thread-safe cache
is essential to avoid data inconsistencies, race conditions, and performance bottlenecks.

Problems without thread-safety:

« Two threads could try to write the same key simultaneously (race condition)

A read operation could see inconsistent data if a write is halfway through
Without eviction policies, a cache can grow unbounded

Key Features of Our Cache:

LRU Eviction (Least Recently Used) — Removes the least recently accessed entry when cache

exceeds capacity

TTL (Time-to-Live) — Automatically expires entries after a set duration
Thread-Safe Access — Multiple threads can safely read and write
Lazy Loading — If a key is missing, the cache automatically computes or fetches the value

public class ThreadSafeCache<K, V> { private final long ttl; private final int capacity; private final
ReentrantReadWriteLock lock = new ReentrantReadWritelLock(); private final Map<K, CacheEntry<V>> cache; public
ThreadSafeCache(long ttl, int capacity) { this.ttl = ttl; this.capacity = capacity; this.cache = new
LinkedHashMap< (capacity, ©.75f, true); } public V get(K key, Callable<V> loader) throws Exception {
lock.readlLock() .lock(); try { CacheEntry<V> entry = cache.get(key); if (entry == null 8&
(System.currentTimeMillis() - entry.timestamp) < ttl) { return entry.value; } } finally {
lock.readLock().unlock(); } V value = loader.call(); put(key, value); return value; } public void put(K key, V
value) { lock.writeLock().lock(); try { if (cache.size() = capacity) { K oldestKey =
cache.keySet().iterator().next(); cache.remove(oldestKey); } cache.put(key, new CacheEntry< (value,
System.currentTimeMillis())); } finally { lock.writelLock().unlock(); } } } class CacheEntry<V> { V value; long
timestamp; CacheEntry(V value, long timestamp) { this.value = value; this.timestamp = timestamp; } }

suddo.io 11

Rules of ReadWritelLock

Write Lock:
To acquire a write lock:

* No other thread can hold a read or write lock

« If another thread holds a read or write lock = current thread waits

« If the same thread already holds the write lock — It can acquire it again immediately
(reentrant)

* Hold count increases and must be matched with same number of unlocks

Read Lock:

* Multiple threads can hold read locks at the same time
* A thread can acquire a read lock only if no thread holds the write lock
+ If a write lock is held by any thread - read lock acquisition waits

Reentrancy:

» The same thread can re-acquire a read lock or write lock it already holds
* But a thread holding a write lock cannot acquire a read lock using the same ReadWritelock (to
prevent upgrade/downgrade complications)

Usage example:

ThreadSafeCache<String, String> cache = new ThreadSafeCache< (1000, 5); cache.put("keyl", "valuel");
cache.put("key2", "value2"); String result = cache.get("key3", () — { System.out.println("Cache miss, loading
value..."); return "loaded_value"; }); System.out.println(result); // loaded_value

This implementation uses:

+ LinkedHashMap with access-order (true) for LRU

* ReentrantReadliriteLock for thread-safe reads and writes
« TTL-based expiration on cache entries

* Lazy loading with Callable<V> loader

Benefits:

® Multiple concurrent reads (high throughput)
® Exclusive writes (data consistency)

® Automatic eviction (memory management)

@ TTL support (freshness guarantee)

suddo.io

12

MASTER
JAVA
INTERVIEWS

This cheat sheet covers:
Platform Independence + Concurrency < Memory
Mode'l
Optional ¢ Collections * Memory Leaks
Threading * ForkJoinPool ¢ Cache Design

Want to dive deeper?
Check out our com prehensive courses
suddo.io

